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FINAL TECHNICAL REPORT

General Abstract:

Microstructures were studied in the presence of generalized defects,
both point repulsive potentials and slit openings in barriers. A number of
transport effects were discovered. For isolated defects a resonance was
found to occur at the threshold energies of a quantum well. A scaling
relation wvas found for scatterers near single barriers. A rich spectrum of
effects was found for single defects near and within double-barrier struc-
tures. The electronic analogue of single slit diffraction was shown to
exhibit high fringe visibilities.

Vritten presentations of research results:

"Electronic Transport in Microstructures with Defects," (Master’s
Thesis of Brent Haukness) - This presents a detailed description of the
methods wused, with 62 figures (145 pp.). It is available on microfilm from
University Microfilms Inc., Ann Arbor, Michigan. Abstract:

The effects of elastic point scatterers on the electronic transport
properties of microstructures are examined using a generalized transfer
matrix approach. Using a delta-function potential to model a defect,
transmission characteristics are calculated for a number of different
microstructures. Among these is the double barrier resonant tunneling
diode. A number of effects are noticed. These effects depend sensi-
tively on the position of the defect relative to specific features of
the potential structure, and a saturation of the effects is noticed
with increasing defect strength. Some of the peculiarities of the
delta-function defect, are also examined, and a comparison is made to
defects modeled with a Gaussian potential.

"Analysis of Electron Diffraction in a Novel Field-Effect Transistor,"
by A. M. Kriman, G. H. Bernstein, B. S. Haukness and D. K. Perry. - This
original paper was published in Superlattices and Microstructures, Vol. 6,
No. 4, pp. 381-386, 1989, and presented as a poster at the 1988 Conference
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on Superlattices, Microstructures and Microdevices held in Trieste, Italy.
It provides a theoretical analysis of the behavior of the QUADFET device.
(The vork of G. H. Bernstein and D. K. Ferry, and the work of A. M. Kriman
related to this project, were not paid by this contract. The work of
Haukness wvas.) This paper represents calculations related to the main topic
of geometric effects in scattering in a number of ways: (i) It provided an
"entry level" problem for the student (Haukness) which taught him some of
the skills that he was to need in mastering the main project, such as using
the CONVEX computer with UNIX operating system and with local plotting
facilities. (ii) It involved a microstructure in two dimensions with non-
trivial geometry. The situation treated - a long thin barrier with a slit,
is in fact a nontrivial microstructure with a defect. The "defect" is a
slit wvhich intentionally built into the barrier. (i1ii) The mathematical
approach was closely related to that used to solve the general problem
ultimately treated by Haukness. Abstract:
Ve analyze a field effect transistor whose operation utilizes the
quantum diffraction of electrons by a narrow slit in the gate.
Calculations are performed using a low-energy conformal mapping tech-
nique vhich does not assume small-angle scattering. It is shown that
the device will exhibit far-field quantum diffraction similar in ap-
pearance to the Fraunhofer patterns observed in optics. The
diffraction pattern can be detected as current collected at a number of
narrov Schottky contacts wvhich together comprise a "viewing screen".
Fringe visibilities on the order of 0.5 are predicted. A number of
applications of the device are discussed.

"Geometric BEffects of Scattering in Microstructures,” by A. M. Kriman,
R. P. Joshi, B. S. Haukness and D. K. Perry. - This original paper will be

published in Solid State Electronics, Vol. 32, No. 12, pp. 1597-1601, 1989, ¢

and vas presented as a poster at the 1989 Conference on Hot Carriers in
Semiconductors held in Scottsdale, Arizona. Abstract:
Trans fer Matrix techniques are used to study elastic scattering by
point defects embedded in quasi-one-dimensional microstructures. This
makes possible an exact analysis of phenomena that arise from breaking'
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of transverse translation invariance. The dependence of transmission
probability on scatterer position is studied for parallel transport in
quantum wells and for perpendicular transport across single and double
barrier structures. It is found that in laterally confined structures,
delta-function and other extremely sharp models of a single defect lead
to sharp resonances vhen such defects are well isolated. Such features
are associated with multiple reflections between the lateral confining
potential and the defect potential. 1In single-barrier structures with
a single nearby defect, an approximate scaling behavior is found that
relates transmission for defects at different distances to that at a
fixed distance with different energy scales. In double barrier reson-
ant tunneling diodes (DBRTDs), the position of the transmission peak is
affected primarily by defects within the quantum well region. The
height of the transmission peak is very sensitive to the positions of
defects within that region, acting essentially as a probe of the
resonance vave function. Defects in front of a DBRTD also affect the
valley current by modifying the longitudinal component of the incident

momentum.

Educational accomplishments:

One graduate student, Brent S. Haukness (a U.S. citizen), was hired for
the year 1988. As a result primarily of the work that he performed under
this contract, he earned a Master’s degree in Electrical Engineering. He
had offers to attend graduate school toward his Ph.D., but he preferred to
enter industry; he accepted an offer from, and has been working since
January for Texas Instruments, Inc.

It vas not found possible, as envisaged in the original budget, to hire
another graduate student with adequate qualifications to perform work re-
quired under the contract. Instead, Ravindra P. Joshi, who had recently
received his Ph.D. in Electrical Engineering from Arizona State University,
vas hired on a part-time basis. (He worked full-time over all, as he also
vorked part-time for R. 0. Grondin.) This vork constituted post-doctoral
training alloved under his visa, and it did significantly increase the
breadth of his experience beyond what he had learned as a graduate student.
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EFFECTIVE POTENTIAL FOR MOMENT-METHOD SIMULATION OF QUANTUM DEVICES
A. M. Kriman, J.-R. Zhou, N. C. Kluksdahi, H. H. Choi, and D. K. Ferry

Center for Solid State Electronics Research
Arizona Stae University, Tempe, Arizona 85287-6206

ABSTRACT

In the simulation of submicron devices, complete quantum descriptions can be extremely computationally intensive, and
reduced descriptions are desirable. One such description utilizes a few low-order moments of the momentum distribution that
are defined by the Wigner function. Two major difficulties occur in applying this moment method: (i) An independent
calculation is required to find quantum mechanically accurate initial conditions. (ii) For a system in a mixed state, the
hierarchy of time evolution equations for the moments does not close. We describe an approach to solve these problems.
The initial distribution is determined in equilibrium by means of a new effective potential, chosen for its ability 10 treat the
sharp potential features which occur in heterosiructures. It accurately describes barrier tration and repulsion, as well as
quantum broadening of the momentum distribution. The moment etrmion hierarchy is closed at the level of the second-
moment time evolution equation, using a closure that is exact for a shified Fermi distribution. Band-bending is included by
simultancous sclf-consistent determination of all the moments.

KEYWORDS
Submicron device simulation; quantum barrier repulsion and penetration; moment method.

INTRODUCTION

The development of nanometer-scale electronic devices has required the modeling of quantum mechanical effects in device
simulations. A number of such simulations have been developed for the resonant tunneling diode (RTD), whose operation
depends essentially on the purely quantuin mechanical effect of barrier tunncling. Because the RTD is a quasi-one-
dimensional device, its analysis is numerically tractable, even when "self-consisiency” (electrostatic fields due to mobile
charge redistribution) is included (Kluksdahl et al., 1989). More general devices, whose active regions cannot be treated in a
one-dimensional approximation, present a computational challenge.

These computational problems already occur in the simulation of classical (non-quantum mechanical) devices. Classical
devices are adequately described by the single-particle distribution function which gives the density in the six-dimensional
phase space of momentum and space coordinates. Near equilibrium, the momentum distribution at each point is well
approximated by a shified equilibrium distribution. This ation leads to the successful and widely used "moment
method” (Blbickjer, 1966 and 1970). In this approach, instead of determining the ful) distribution function as a function of
six arguments, one uses a reduced description based on a few momentum integrals ~ moments of the distribution function -
as functions of spatial position. The moments obey time evolution equations ("moment equations™) that are integrais of the
Boltzmann equation.

The quantum mechanical generalization of the classical distribution function is the Wigner distribution function, a partial
Fourier transform of the density matrix. lafrate, Grubin and Ferry (1981) developed a quantum generalization of the moment
method, based on integrals of the Wigner function. Interestingly, the first three quantum moment equations are formally
idenﬁallomeclusia’onu. Thus, dfmnbbehcludedinunﬁmlniw.mme¥maheadybeml
in the initial conditions. This fact is also known from simulations based directly on the Wigner function (Carruthers and
Zachasiason, 1983): For motion in a parabolic potential, the full classical and quantum distribution functions obey identical
uations of motion, 3o the difference between ¢ and quantum behaviors must be “contained” in the initial distribution,
ﬂethhdmnnmuﬂmmuzrmdﬁeqmmmﬁeﬂdhdmbnmubemﬂmdhminitialcmdiﬁons.ilis
aeveniheless the case that for motion in general potentials, the classical and quantum evolution equations also differ.

The moment equations form a hierarchy, with the time derivative of each moment determined in part by the gradient of the
mext moment in the hiesarchy. In a practical calculation, one only a few [ow-order moments, closing the hierarchy
bymkhgmwothi{onfuuhimammund. an approach is justified by the fact that at equilibrium, the
exact distribution is complesely determined by the density and temperature (the zeroth and second moments). Away from
equilibrium, the closure approximation corresponds to an assumption regarding the form of a quasi-equilibrium distribution.
In our simulations, we use the first three moments (number, momentum, and energy densities). Our closure is initially
dedvedgummin that third moments are small, but it is exacily true for a large class of distibution functions, including
the Femibgn disgribution.

In one-dimensional RTD models, it is possible nmmamnﬂec%nlfmml Wigner distribution function in
equilibrium by performing a thermally weighted sum over all siates. This has provided an initial distribution which is
sccursiely siationary under numerical integration of the Wi function time evolution ¢ -sation. In contrast, a three-
dimensional device has many mors states, and if its .«mgwbni-mnpnblz.‘nhdimculumnﬁnd
individual stases, let alone perform a compless sum. Another me .undonp»hm‘l.doumld‘uymh
Mhmhcmtunﬂauﬂylmendvc.mmbum ied primarily 0 problems. |See

ason and Hess, (1989), Regisier ¢f ol. (1988), and references therein.) What is therefore required is a computationally
efficient way of detesmining an equilibrium (imitial) distribution, or set of moments, that would complement the
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computationally efficient moment method. As noted, the moments so determined must manifest quantum mechanical effects:
quantum mechanical comrections cannot arise independently from the time evolution equations.

Some of the authors (Kriman, Zhou and Ferry, 1989) have recently proposed a statistical (“effective potential”) method. This
m a tum mechanically accurate equilibrium distribution which we will use to satisfy the requirement for accurate
j tions. The effective potential describes barrier penetration and repulsion, along with equilibrium brosdening of
the momentum distribution which does not occur classically. Other effective potentials, derived rigorously as semiclassical
:ﬂxoxlmuiom of the partition function, cannot be applied in the nce to typical device models. Indeed, these previous
ective 'pocenmls diverge everywhere if the potential is infinite in any finite region. The new cffective potential is a well-
behaved functional of the real potential, and has the asymptotic behavior near an infinite potential barrier, giving errors
in density at the few per cent level. Like previous elfective potentials, it also approaches the correct high-temperature limits.
In the following, we will recapitulate the method and outline its derivation.

EFFECTIVE POTENTIAL

We find an initial condition in equilibrium by using a recently developed effective potential method (Kriman, Zhou and Ferry,
1989). This method is similar in form to earlier statistical approximations developed by Giachetti and Tognetti (1985; 1986)
and ‘I.?' Kicinert (1986) with Feynman (1986). In common with these, the new method computes the density classically from
an effective potential which incorporates a local average of the actual potential. The local average r_eﬁr:smu the quantum
position uncertainty of a particie whose energy ~ and thus momentum - is not completely uncerain. information about
the energy distribution from the finite temperature, and thus the range over which the position must be averaged is of

the order of the thermal wavelength Aty = A Vi/2m .

‘The main respects in which carlier effective potential methods differ from the one we use here have to do with the effect of
infinite potentials. The Giacheuti-Tognetti and Feynman-Kleinernt effective potential approaches assume that the underlying
roxenlill is smooth, and proceed from there to derive analytically approximations which are exact in the high-temperature
imit. This is e%& the fact that in the high rature limit, the lowest-order quantum correction to the density is of
relative order atm) » where V" is the second derivative of the potential (Husimi, 1940). Many of the poientials
commonly used in modeling solid state — and panticularly heterostructure — devices, contain potentials that are not smooth.
The extreme case of this is the infinite wall potential, used where appropriate to ses the density to zero.

The previous effective potentials all diverge for this potential, as they do for any tial whose integral in any finite region
is infinite. This is because the effective potentials are linear averages of the relrr:nwmial. and the weighting in falls
smoothly 1o zero. The new potential method that we have inroduced uses nonlinear averages, and remains well-defined in
the presence of infinite barriers.

The nonlinear effective potential is derived in the spirit of density functional t (DFT) (Jones and Gunnarsson, 1989).
The DFT is based on the fact (Hohenberg and Kohn, 1964; bevr. 1979; Mermin, 1965) that the clectron energy is & unique
functional of the electron density. Although the exact functional is unknown and presumably quite complex (Lieb, 1982), it
is possible to develop approximate functionals that are adjusted 10 be quite accurate for a set of simplificd cases (Kohn and
Sham, 1965). Analogously, the nonlinear effective tial is based on the observation that the density is (by construction) &
unique functional of the potential. While the exact formal expression of this functional can be difficult to evaluate, it is again
possible to approximate functionals by adjusting parameters in a suitable Ansatz. We have also used certain simple,
exact properties of the density 10 constrain the form of the effective potential. These constraints were that (a) the effective
potential approach the real one at high temperature, and that the effective potential preserve (b) homogeneity and (c)
separability properties of the real potential.

The high-iemperature constraint siems from one motivation of effective potentials in general: that in the classical regime the

density is given simply by an exponeniial of the real potential, and that this regime is approached at high temperatures. One

simple consequence of this constraint is that various weighting functions must be normalized. Another is that the local

averaging must occur over length scales that decrease with increasing temperature. By dimensional analysis, for a sharp
feature this length scale must be essentially the thermal wavelength,

mmmymﬂmwﬁnmhmnummcm”hmw tial lead to an equal change in the effective
potential. is a surprisingly stringent constraint. For example, consider the potential has the general functional form

Va5 ( (haW)XD)) m
where hq is 8 function with laverse h' under composition:
f(x) ® b ha((x) ) . @

Here b is a real function of a real argument, and nonlocality is introduced by the average (*)(x). It can be proven that only
two forms of h are sllowable in (1) under the constraint of homogeneity. These are hy (v) m v, which icads to the ordinary
= exp(-yv), which leads 0 the exponential averages that we must ultimately use if
(Slightly more general h's are allowable, but lead to the same averages.)

The constraint we use is thet if a potential s in Cartesian coordinates, thea its effective will be
Mmm This follomftotnthefwo:’::li'l‘yofthedenm wmunmddhnmmmk
conadition imposed is not 10 imply that separability will be conserved for the other coordinate sysiems in which the
Schridinger equation is separable. However, by means of a standard argument from the kinetic theory of gases, it does
follow that averages such as the one appearing in (1) must be defined by a weighting function that is Gaussian. (See, for
example, (Castellan, 1971)).
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Numerical parameters in the effective potential were set by optimizing the fit 10 the density in semi-infinitc wall potential,
whose densizels known exactly (Kriman, Kluksdahl, Ferry, 1987). temperature mass can be scaled out of this

potential, so the results have 8 very general validity. Afier sequiring that the leading asymptotic behavior of the density near
the wall be given exactly (which in itself rules out many functional ’omu for the eflective potential), the maximum fractional
€ITOr Was zed. ing the form
o0
Ve = ﬁl w(rB) V) , ®
0
with
w(s) = wy exp(-as+8s) , ()

we found that wo~1.4427, a~14.9442, and 5=5.8265. The weight in the average defining V. is & Gaussian of rms width
20=3.32200(¥/8)'2. It should be understood that these four parameters are the result of a two-parameter optimization: (i)
The small-x asympiotic behavior of the density nsrvx’) requires w(0)=(In2)-1, (ii) The high-temperature/classical-limit
constraint requires w 10 be normalized, so 8 depends on o in a way that has nothing to do with the model potential chosen for
optimization. The peak in the distribution w occurs when 0-0.73g1m. Thus, the effective potential represents an average of
the real potential over s range comparable to the thermal wavelength. (This was expected, but it was not imposed as an
inde; t condition.)

We used this effective potential to compute the density in equilibrium of a resonant tunneling diode. The diode consists of
0.3¢V barriers, Snm long, separated by a quantum well region Snm long. The electron is assumed to have the a mass 0.067
times the free electron mass, appropriate for GaAs. In Fig. | the result of the effective potential calculation is compared with
the exact numerical result (Kluksdahl, e1 al., 1989), computed by summing over scatiering eigenstates.

"o 2 0 &
Position in
Fig. 1. Electron density from exact approach (sum over scattering states, full line)
and effective potential (broken line).
MOMENT METHOD
A reduced description of semiconductor sysiems that has been successful for classical probiems is the moment method
(Btekjzr, 1966 and 1970). In wnlum , the analogue of the distribution function, which provides a "completc”
single-particle description is the Wigner distribution function (Brittin and Chappeli, (1962); Carru and Zachanason,

2]983); Balazs and Jennings, (1984); Hillery, et al. (1984)). It is a Fourier transform of the density matrix p(x.x) =
W (x)wi(x)) [y! and y are field operators), taken with respect to the difference coordinate:

fw(xpp) = Idy ePI p(xelx-d) . 5)
e d
The Wigner distribution function fy is the Wey! transform of the classica) single particle phase space density. Thatis, itisa

particular quantum generalization of the phase space density. It is & real function, and one can immediately define local
moments o? the momentum distribution by

N
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Ha) = [dp fw(xpi) p° ©

related 10 local averages of the momentum and its powers by

" =nolp, (v))

where p so. It is possible to derive, from the exact quantum mechanical equation of motion of the Wigner function, a set of
moment equations anslogous 10 the moment equations of classical semiconductor problems (lafrate, Grubin and Ferry,
1981). The first three moments evolve in time according to

.19
T mah =0,
Fergmeo-o, ®

149 oV
%",'“;3;&13 G- (Ex),

where the inhomogeneous terms on the right contain the effects of collisions. One may reasonably expect that for a good
approximation of a statistical system's vior, it would suffice to evolve just the first three elements, corresponding to
density, momentum, and encrgy. Howevers, as noied carlier, closing the hierarchy at any finite order requires some extra
information, typically in the form of an expression, using lower-order moments, of the highest-order moiment appearing in
the equations. In particular, the last of our moment equations involves the gradient of i3, for which no time evolution
equation is given. One way of "closing” the moment equations is to make some approximation within the derivation of the
moment equations. In this implicit approach, a m-me closure expression may not occur, and the approximation is built into
the time evolution equations, which are aiso usually referred to as (“the") moment equations. To remove any ambiguity, let
us state that where we refer, in this , 10 the formal equivalence between the first three classical and quantum moment
equations, we ase referring specifically to (8), the moment equations derived without any hierarchy-closing Ansatz.

In the special case of a pure state, the "statistical” system is described completely by two real quantities: y = R"(Y) +
flm(y). Thus one expects that it should be possible to close the moment equations at the level of the two moments. In fact,
lafrate and coworkers (1981) have shown that for a pure siate,

L
uz-;-—Tps;,-lnp.

The second term is (up to 8 multiplicative factor) the "quantum potentisl” of Bohm, and using this closure in the first two
equations of the hicrarchy (8) yickds the same moments as a direct solution of the Schrbdinger equation.

For the general (mixed state) case, we first derive our closure expression by regarding the skewness of the momentum
distribution as small. We write

p=p)+8,

and find that (82) = (p2) - {p)2, and of course (§) = 0. If we make the assumption of approximately Gaussian distributions,
or some other weaker assumption which causes the skewness (8) 1o vanish, then we can conclude that

@%) = 302p) - 203 . ®
This closure rule has a very useful property: 1t is easily demonsirated that a large class of distributions, including the
common drificd Maxwellian and drifted Fenmi distributions, satisfy this relation. In general, it holds for any distribution of
the form £(xp.1) = F(x,(—{p(x.0))2.0).

It is important to note that while the form of our closure is {(p—p))?) = 0 in the classical case, different closures arise when
similas-8 ing approximations are made in different contexts. In panicular, Ploszaj and Rhoades-Brown (1985) and
Stroscio (1986) use an implicit closure that is essentially equivalent to setting ((7—(p))3) = {(p—(p))*) = 0 and solving the
moment equation for p3 (the lowest-order equation nof shown in (8)‘. The closure obtained in this way does contain &
quantum correction, lrvnvu. there as in most pesturbative aproaches, ing orders of A are with increasing
orders of derivatives of the potential, making it inappropriate for the problems we wish 10 treat.

SUMMARY
We have proposed an approach 1 the moment method for quantum devices, using an effective potential-based density which
is designed 10 mimic important features of the true density, such as tunneling, barrier penetration, and the nary
barrier repulsion. The choice of ial functional is guided by the requirement 1o satisfy » sumber of fundamental
constraints. We describe an explicit closure for the moment equations at the level of the kinetic energy time evolution
equation which fs satisfied exactly by all "drified” distributions.

ACKNOWLEDGMENT
This work was supported i part by the Armsy Research Office.




REFERENCES

Balazs, N. L., and B. K. Jennings, (1984). Phys Repts., 104, 347-391.

Bltwekijer, K., (1966). Ericsson Tech., 2, 127-183.

Bltekjeer, K., (1970). IEEE Trans. Electron Dev. .17, 38-47.

Brittin, W. E., and W. H. Chappell, (1962). Revs. Mod. Phys., 34, 620-627.

Carisson, A. B. and N. W. Ashctoft (1982). Phys. Rev., BZi. 3474-3481.

Carruthers, P, and F. Zachariason, (1983). Rev. Mod. Phy: 35, 245-285.

Castelian, G. W (9. Mmm)‘a 2nd. edn., (Addlson-Wesley. Reading).

Feynman, R. P., nndH Kleinert, (1986). Phys. Rev. A, 31 5080-5084.

Giachetii, R, and V. Tognetti, (1985). Phys. Rev. Leu., 55, 912-915.

Giachetti, R., and V. Tognetti, (1986). Phys. Rev. B, 33. 7647-7658.

Hillery, M., R.F. O'Connell, M. O. Sculll and E. P, Wignct (1984) Phys. Repts., 106, 121-167.
Hohenberg, P, and W. Kohn.(l964) Phys. Rev., 136, B

Husimi, K., (1940). Procs. Phys. Math. Soc. J, n.zz. 264

Iafrate, G. J., H. L. Grubin, and D. K. Ferry, (1981) J. Physique, 42 Coll. C7, 307-312,
Kicinen, H. .(l 986). Phys. Len. A, 118, 267-270.

Kiuksdahl, N. C., A. M. Kriman, D. K. Ferry and C. Ringhofer, (1989). Phys. Rev. B, 39, 7720-7735.

Kohn,w andLJ Sham, (1965). Phys. Rev., 140, A1133-1138,
Kriman, A. M, N. C. Iuksdlhl and D. K. Ferry. (1987). Phys. Rev. B, 36, 5953-5959.
KnmmA JZhou.andDKFen'y (1989). Phys. Len. A, 138, 8-12.

Levy.M (l979) Procs. Nat. Acad. Sci. (USA), 16, 6062-6065.

Mason, B. A, and K. Hess, (1989). Phys. Rev. B, 39, 5051-5069.

Mermin, D., (1965). Phys. Rev., 131, A1441. 1443

Register, L. F,, M. A. lrosc:o.lnd M. A_ Litilejohn, (1988). Superlats. Microstr., 4, 61-68.
Plosujcuk. ., and M. J. Rhoades-Brown, (1985). Phys. Rev. Len., 55, 147-149,
Stroscio, M. A, (1986). Superlatt. Microstr., 2, 83-81.

— e . - a

PR

R 2 SOV NP



Superlattices and Microstructures, Vol. 6, No. 4, 1989

381

ANALYSIS OF ELECTRON DIFFRACTION IN A NOVEL FIELD-EFFECT
TRANSISTOR

A. M. Kriman*, G. H. Bemsteint, B. S. Haukness* and D.K. Ferry*

*Center for Solid State Electronics Research
Arizona State University
Tempe, AZ 85287-6206

tDepartment of Electrical and Computer Engineering
University of Notre Dame
Notre Dame, IN 46556

(Received August 18, 1988)
(Revision received June 12, 1989)

We analyze a field effect transistor whose operation utilizes the quantum diffraction of electrons by a narrow slit in
the gate. Calculations are performed using a low-energy conformal mapping technique which does not assume
small-angle scattering. It is shown that the device will exhibit far-field quantum diffraction similar in appearance to
the Fraunhofer pattemns observed in optics. The diffraction pattern can be detected as current collected at a number
of narrow Schottky contacts which together comprise a "viewing screen”. Fringe visibilities on the order of 0.5 are
predicted. A number of applications of the device are discussed.

1. Introduction

Refinements in nanolithography and epitaxial growth
techniques have made possible devices with progressively
smaller features, allowing the observation of real-space wave
properties of electrons in the solid state. Paradigmatic
examples of these are resonant tunneling diodes [1] and
small ring structures [2] exhibiting Aharonov-Bohm effects
[3]. The signature of the wave mechanical effects is
typically some non-monotonic feature in a plot of current
versus ¢lectric or magnetic field. Such features arise as the
interference between different electron paths alternates
between predominantly constructive and predominantly
destructive.

In at least two respects, the devices that have been made
or suggested thus far generally test only special cases of
interference phenomena. First, with only one exception that
we are aware of (Furuya [4)), there have been no diffraction
Jevices, such as gratings or slits, in which "bright" and
"dark" regions may be observed simultaneously. While
electron diffraction has been demonstrated and utilized (5]
for measurement, the diffraction pattern is generally detected
a macroscopic distance from the diffracting structure, rather
than within the microscopic region that produces it.

Second, the interference is usuaily between quantum
paths which differ in some discrete way, as in an Aharonov-
Bohm ring, rather than among a continuous range of paths,
as in single-slit diffraction. In a path integral view, for
instance, the resonant tunneling diode operates by the
interference between paths differing in the number of times
they traverse the quantum well. In the Aharonov-Bohm
rings, the interfering paths differ discretely in their winding
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number around the flux enclosed by the ring. In the device
proposed by Furuya, diffraction is effected by a transverse
potential grating in the base, and the paths are distinguished
by the opening of the base through which they cross.

. Wedescribe a device which differs from existing devices
in both of the above-described respects. This "QUADFET"
(Qnantum Riffraction EET) [6] is essentially a single-slit
diffraction experiment realized within the two-dimensional
electron gas of an inverted HEMT layer. The analog of the
viewing screen is a set of forward-biased Schottky contacts,
or "collectors”, which serve as the drain (see Fig. 1). The
slit width can be varied by adjusting the gate potential, and
lobes of the diffraction pattern are detected as variations in
the current reaching different collectors.

It is important to consider the survival of the diffraction
pattern in the presence of collisions. Beenakker et al. [7)
performed elegant experiments which show that elastic
collisions can be ignored over path lengths of at least 3 um.
Their results demonstrated not only that the phase memory
of the electrons was conserved, but also that the elastic
collisions did not cause the paths to deviate significantly. If
elastic collisions did cause significant deviation of the path,
then the Fraunhofer diffraction pattern in the QUADFET
would be washed out by thy collisions within an elastic mean
free .lP“h length.

his paper is concerned primarily with how the
QUADFET would work in the absence of scattering. A
more central problem is whether the device can be made to
work given the fundamental differences between the usual
optical diffraction experiment and the electronic device we
have proposed.
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Fig. 1. Top view of the QUADFET.

The first difference is in the source: it is difficult to
monochromate and focus electrons in a semiconductor
device, whereas optical devices benefit from readily available
laser sources shining through transparent, nondispersive
media. While some monochromation is possible by the
interposition of a gate, in the manner of the THETA device
[8], this brings into play the constraint of statistics. Because
electrons are fegmions, their density in phase space is
bounded (by 2/h” on a coarse grain), Thus, focussing and
monochromation diminish the current, so it is useful to
design a device which functions well with an unfiltered
source distribution.

It is clear, therefore, that we must deal with a spatially
extended source having a distribution of energies. These
give rise to space- and time-domain "coherence" effects
which have been studied in ordinary light optics [9,10]. In
the specific examples that are usually considered, however,
some kind of small-angle approximation is usually made.
Without some such approximation, the usual Huygens-
Fresnel-Kirchoff approach becomes complicated.
Therefore, in analyzing the QUADFET we have developed a
new approach related to those used in waveguide analysis.

2. Device Model and Diffraction Amplitudes

Our central problem is to give an adequate treatment of
the quantum states in the vicinity of the slit. [nitially,
therefore, we solve the Schrddinger equation for a potential
that consists of a single slit gate lying along the y axis:

Vix.y) = Vo(y) 8(x), m

(x is the coordinate perpendicular to the gate, within the
two-dimensional electron gas), where we consider the
special case

0 forlyl <af2

. (2)
oo forlyl 2 a2

Vo(y) = {

The gate is assumed, like the corresponding optical barrier,
to be infinitesimally thin (i.c., o 8(x)). This is justified if
the Fermi wavelength is long compared to the actual gate
length. The barrier "strength” V(y) is nonnegative, so there
are no bound states. Thus, a basis of eigenstates for this
potential consists of scattering states incident from the right
and left. Completely general momentum-normalized [11]
left-incident states can be written (using continuity of the
wavefunction at x = 0) in the form [12]
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Wi(x,y) = ;;sin(k,x) exp(ikyy) O(=x) + Zx, (3)

where O(u) = { 1ifu >0, 0 if u <0} is the unit step
function, and

Ty = f: da, F@ykyE) expligixitiayy) . (4)

(The integration, here and wherever explicit bounds are not
given, is over the whole real line.) This eigenstate describes
an electron incident with wave vector k = (ky, k,) (where k,
>0). The sine term in (3) is the standing wave that arises if
there is perfect specular reflection at x = 0. The difference
between this and the exact wavefunction is Xy, which
contains components scattered into final wave vectors q =
(¢x, qy). Because our chosen potential (2) reflects
specularly almost everywhere, the correction Yy goes to
zero quickly with increasing distance from the slit, and F is a
smooth function of g,. For a permeable (Vy(y) < =) or
rough gate potentia{, F would have a component
proportional to 8(q, —k,), implying finite probabilities for
transmission and nonspecular reflection.

The electron generally is scattered with transverse wave
vectors taking the full range of values —o < g, < 0o. The
total energy E =% 2k2/2m is conserved (k = lkl), so q2 = k2,
which makes ¢, an implicit double-valued function of ¢, for
a given energy. The sign of g, must be chosen to satisfy the
scattering boundary conditions: Iy should have waves
propagating away from the gate (g, > 0 when Ig,l <), or
exponentially damped away from the slit (~ig, > 0'when lg,|
> k). Note that although they do not contribute to the
current, these exponentially damped waves are an essential
part of the state, and contribute to the density near the gate.
(By reflection symmetry, the right-incident states have an
expression similar to Eq. (3).)

The scattering state (3) is completely specified by F. An
carlier study [12] concerned with idealized contacts treated a
geometrically similar problem. Generalizing the method
developed there (see in particular the case treated in the
Appendix), one can write down an implicit solution for a
potential of the general form (1): F is that function which
satisfies

jdq, F@ykyE) (a5 + §00)) explitaykyi=1 (5)

for all y.

In the earlier study, it was found that the dominant
behavior of transmission amplitudes (to ¢, from ky) arose
from the &, factor in (4), while the energy-aependcnce of F
was a higher-order effect. In order to keep the problem
tractable, therefore, we have assumed

F(qy.ky.E) = F(qyky:0) = Flqyky) . ®

This approximation is completely analogous to one made
in calculations of microwave waveguide characteristics | 13)
and of fluid flow around obstacles and through constrictions
{14]. The computational advantage of this approach is the
possibility of applying conformal mapping techniques, as we
shall do. We apply a mapping into elliptic coordinates
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W + i€ =w = cosh-1(2iz/a) , (@)

with z = x + iy.

The infinite barriers of the gate now coincide with =0 (x
=0,y<-aR2)and E=% (x =0, y > a/2). We can now
implement the potential simply as a Neumann (¥ = 0)
boundary condition, and we can expand Zy in the complete,
discrete basis of separated states that results:

Ze= 3 ¢ sin(nE) e, ®
n=1

where the superscript labels the half-plane of x: ¢, = ¢,(*)
for0 <& < (x > 0), and ¢, for t < & < 2 (x < 0).
These expansion coefficients are implicitly functions of k =
(iky, k,); and can be determined by continuity conditions at
the slit (the locus x = 0, ly | <a/2 is just p = 0). Continuity
of the wavefunction immediately implies ¢,(*) = ¢, () = ¢,,.
Derivative continuity takes the form

~$ P (=0+2) = +3 W=0+.28-5).
Inserting (3), we find

Cn= %i"“ Jalkyal2) , ®

where J, is the nth-order Bessel function of the first kind
{15). By identifying (4) and (8), and taking Fourier
components, we find that

F(ayky) = W&Y?_:, n(=1Y" Jn(kyal2) Jnigyal2) . (10)

We will be concerned with diffraction patterns in the
Fraunhofer regime: current will be collected many
wavelengths away from the slit. As noted earlier, F isa
smooth function of gy, 50 we can use a stationary phase
analysis of (4) in this regime to find that the wavefunction is
asymptotically

Wi {x=rcos@,y=rsinf) ~ an

n
ky (%) F(ksin,ky) cos expli(ke-7)] -

in polar coordinates; the expression is valid at large
distances. More precisely, it is valid whenever Vk/r cos@
is much smaller than the g, -scale for variations in F(gy, k;)
about ¢y = ksin@ . Therefore, we make no small-angrc
approximation, either in our far-field analysis, based on
(11), or in our solutio~ of the Schrodinger equation for the
scattering states (3).

3. Device Characteristics

As discussed in section 1, ballistic paths on the order of
3 microns have been obtained in GaAs/AlGaAs HEMTs at
low temperatures. This is considerably longer than the
wavelength of a 1 meV electron, and also longer than the
minimum feature sizes achievable by electron beam
lithography [16]. Because of this, it is possible to choose
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the dimensions of the drain region in Fig. 1 so as to fulfill
two complementary conditions: on the one hand, the
collectors are close enough that a large fraction of the
electrons travel ballistically from slit gate to drain. On the
other hand, they are far enough away that a Fraunhofer
diffraction pattern is detected. This can be achieved by
placing the tips of the collectors one micron from the slit.
With a 100 nm pitch, collectors at this distance would yield
an angular resolution of about 6 degrees.

In order to observe diffraction effects, the slit width must
be comparable to the electron de Broglie wavelength. This
in turn requires a treatment of the states that is based directly
on the Schrédinger equation (Section 2). Having placed the
collectors in the Fraunhofer regime of distances from the slit,
however, we assure that the potential, which depends on the
source-drain bias Vps, varies with a characteristic length
scale much longer than the wavelength. This allows us to
retain one simplifying assumption of the usual semiclassical
approach to electronic transport: it is possible to neglect the
field in the computation of the eigenstates. That is, we can
use the states of the previous section. In this regime, the
dependence of the current on Vpg arises from variation of the
state occupation probabilities.

We can assign an occupation probability to the scattering
states (3) by observing that their incident current density is
the same as that of normalized momentum eigenstates far
from the slit [11]). Furthermore, we observe that in
equilibrium (zero bias) there is no net current, since the
current transmitted through the slit from scattering states
incident from the source at any energy is exactly
compensated by a deficit of reflected current associated with
degenerate scattering states incident from the drain. The net
current density in the drain region therefore depends only on
the excess occupation probability in the drain:

J®) =[ak, [ak, sn(k) jBrk) . (12)
0

Here j(0)d0 is that part of the total transmitted current which
is ejected into the range of angles (0, 6+d9). The current
density associated with incident wave vector k,

JO:K) = £ cos20 k2 K2 IF(ksind k)2, (13)
nm

is computed from (11). With a forward bias of Vpg, the
differential occupation probability is

Sn(k) = n(E(k)-eVps) - n(E(K)) , (19)

with

£) = 2
n( )—mcxp I

We have evaluated (12) numerically. Figure 2 shows the
result for a slit width of 250 nm, an electron density n = 3 x
101! cm2, and Vps = 0.1 mV. Lobes, characteristic of
diffraction, can be seen clearly.

The distribution (14) has a width of roughly eVps + kT
in energy. For a density of 3 x 101! cm-2 in n-GaAs, Eg =
11 meV, compared to kT = 0.36 meV (at 4.2K). The
clectron distribution can therefore be made approximately
monochromatic if the bias is kept in the few-millivolt range,
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Fig. 2. Angular current density j(6) for a slit width of 250
nm, an electron density n =3 x 10!! ¢cm-2, and
Vps = 0.1 mV.
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Fig. 3. Current density j(0) for a slit width of 150 nm and
electron density n =3 x 10!! cm-2, for biases
Vps of (a) 3.16 mV, (b) 1.0 mV, (c) 0.316 mV and
(d) 0.1 mV.

and for Vps in this range, the temperature dependence due
to the width of (14) is negligible (our calculations are
performed at T = 0K). Thus, obtaining high temporal
coherence is not difficult. Curves in Fig. 3, plotted for
different values of the bias, show that for Vpg less than
about 1 mV, tt : current den ity is essentially proportional to
bias. At the highest bias, the diffraction lobes are shifted
toward smaller angles. This is due to the shorter wavelength
of clectrons injected at high bias. (Calculations in
subsequent figures were performed using Vps = 0.1 mV.)

The above suggests that there is only a weak dependence
on temperature below about 40K. In the real device,
scattering will broaden any sharp features that (12) may
exhibit. Nevertheless, studies using hot electron injectors
with variable injection energy [8] display a pattern that
simplifies our analysis: over short distances, the scattered
(non-ballistic) component of the electron distribution quickly
assumes a broad distribution of energies, initially very flat
over the whole range of energies from zero up to the energy
of the ballistic eiectrons. This kind of scattered component
gives rise to a smooth, featureless background, above which
the diffraction pattern due to ballistic electrons should be
observable.
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Another source of incoherence is the spatial extent of the
source. A common measure of coherence (appropriate for
quasi-monochromatic sources) is Michelson's fringe
visibility V [10]. This is defined in terms of the intensities
of an adjacent pair of extrema in the diffraction pattern as

1%

(15)

Jmax+/min *

The most commonly studied example of spatial
coherence effects considers a double slit experiment, where
the canonical result is (hat V depends on a quantity ¢a/A,
where ¢ is the angle subtended by the source as viewed from
the diffracting slit, and equals & for the device shown in Fig.
1. Diffraction fringes are clearly discernible only when 0(15\.
is small: V = Isinc(rda/A)! (sinc(x) = sin(x)/x). Appl?'ing
this classical result to our situation, for n = 3x10!! cm (A
=46 nm) and a = 250 nm, we find V < 0.02. In fact, this
criterion is rather conservative, because it is derived in the
paraxial approximation of small ¢ and relatively large a/A.
This allows one to ignore the disclination factor in
Kirchoff's rigorous formulation of the Huygens-Fresnel
theory, and to neglect the reduced apparent size of the slit as
viewed from an oblique source. The effect of these
neglected factors is to reduce the contribution of electron
waves incident at wide angles, and effectively focus the
incident waves into a source distribution with smaller
effective extent ¢.

For the present small a/A situation, jmax varies rapidly
from one peak to the next, so V is ambiguously defined.
For a conservative estimate, we compare the current density
of each minimum with that at the subsequent maximum (i.e.,
the lower of the two adjacent peaks). In Fig. 4 we plot the
resulting fringe visibilities for the lobes of Fig. 2, and find a
fairly high value of V ~ 0.5. It is unclear at present to what
extent these higher values of V are due to our basic
approximation (6). However, it seems likely that the
classical value 0.02 may be regarded as a lower bound.

4, Device Applications

The QUADFET has interesting device applications. Two
of these are based on the way the diffraction pattern varies
with gate bias. As gate bias is increased, and slit width
decreases, the diffraction pattern (Fig. 5) and its lobes (Fig.
6) shift outward to larger angles. Viewed at a particular
collector, this leads to oscillations in the current, as different
lobes cross the collector's angular position. This
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Fig. 4. Fringe visibilities V for the 250 nm slit.
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Fig. 5. Current densities for slit widths of (a) 250 nm, (b)
200 nm, (c) 150 nm and (d) 100 nm, for the density
and bias conditions of Fig. 1.

60
50 '1
‘é:n 40 1 .
=
P 30 1 B
o o
< 20-
- o first lobe
104 ™+ secondlove
0 T L EE— L
50 100 150 200 250 300

Slit Width (am)

Fig. 6. Positions of the first and second subsidiary current
maxima, as functions of the slit width.

10
3
2
F
E
<
- R
.‘i n -
2
&
£
g
5
b Y,

[ T — —T T

0 50 100 150 200 250
Slit Width (nm)
Fig. 7. Current density at 45° viewed as a function of slit

width.

phenomenon, shown in Fig. 7, is essentially an oscillatory
transconductance. The oscillatory characteristic makes
possible a versatile frequency multiplier: for a large angle or
voltage amplitude, one cycle of gate voltage can correspond
to many cycles of output current. The output has a dominant
component at an adjustable frequency, unlike ordinary
frequency multipliers, in which the output power is typically
shared by a range of harmonics and the output signal must
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be selected by filtering. Since the device is ballistic and can
operate at high frequencies, multiplied frequencies can range
into the terahertz under proper conditions of bias, density
and angle.

In addition, collectors can be chosen which are turned on
or off in complementary response to the input voltage,
allowing the formation of a low-power gate.
Complementary logic may thus be implemented with
QUADFETSs in place of the MOSFETSs used in CMOS.
Possible advantages are a reduced number of fabrication
steps and the inherent high speed of ballistic transport.

Furthermore, QUADFET's may be used as magnetic field
sensors. A magnetic field applied perpendicular to the plane
of the device curves the electron trajectories, shifting and
deforming the current pattern detected at the drain collectors.

5. Summary

We have described the analysis of a novel field effect
transistor, whose operating principle is the quantum
diffraction of electrons. Appreciable fringe visibilities can be
obtained even in the presence of low source coherence. The
useful property of oscillatory transconductance was
demonstrated theoretically. This property leads to a number
of useful device applications.
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